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Outline

What is the federated data-science and why does fusion need this new
paradigm?

Data federation workflow utilizing
- computer science, applied math and artificial intelligence tools
Some basics of machine learning techniques

Present status of the federated workflow research in the KSTAR-
NERSC-PPPL (HBPS-Group)-ORNL-ESNet-KREONET Consortium

Short-term plans

Discussions



A tokamak reactor is packed with thousands of sensors to
be federated together with many users and many computers
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Fusion data from experiment and simulation possess
all the big V properties
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Why an end-to-end federated framework?

« Fusion plasma dynamics is multi-scale, multi-physics phenomena.
- Nonlinear interactions (self-organization) determines physics outcome
- Physics should be determined jointly from many instruments or scales
- Each instrument has its own quality, error, and uncertainty (veracity),
- Error from each instrument propagates to error in other physics estimates

« Different instruments are managed by different scientists
- human integration - not efficient

* Future fusion devices may be in different physics regime
 Experts and computing capabilities are scattered all over the world
- Experimental steering takes too long for fast scientific progress

— Combining-in the more complete physics (from 1st principles
simulations) will be difficult.

Utilize computer science, applied math and Al tools.
Simplify analysis setup: end-to-end abstraction for parallelization and libraries



System structure in the federated fusion research

Reduced (In future DEMO reactors in

Big Data “nuclear” environment, sensors
can be limited, and HPCs will
become a more important part of
the federated research.)
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System structure in the federated fusion research
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Big Data
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Physics workflow in the federated fusion research

HPCs,

Distributed // (
Clusters /

Pre & post computing at large scale
» Guide “next-day” experiments
Understand fundamental physics
Simulation data too big for filesystem
Many collaborators - Federated
In-memory on-the-fly analysis/vis, &
reduction: train Al tools

{

Small-scale, reduced model,
empirical computing
For the quick empirical analysis and
experimental support

Experiments: high cost

» Fusion data is big: ITER~400PB/yr
« Thousands of sensors: PB per day
- Data analized & reduced near instruments

%%’— Physics too complicated for onsite study

S Near-realtime federated data flow needed
- “Streaming” data-science with Al

e/ﬁxperiment - analysis/understanding 2>
steer present/next experiment

Goal: Accelerated & cheaper

realization of commercial reactors




Example KSTAR workflow:

Machine learning for online ECEi frame classification
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Slow and Fast Data lanes in federated fusion research

Some data segregated

Collaborative,

-0 1t phase
e Near re‘al time ~100 remote : P D
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Home » For Users » Data, Analytics & Services » Data Analytics and Machine Learning » Deep Learning & General ML

DEEP LEARNING & GENERAL MACHINE TABLE OF CONTENTS
LEARNING . Science Use Cases
. Resources for learning
more about machine
Machine Learning and Deep Learning are increasingly used to analyze scientific data, in fields as learning for science
diverse as neuroscience, climate science and particle physics. In this page you will find links to
examples of scientific use cases using deep learning at NERSC, information about what deep

learning packages are available at NERSC, and details of how to scale up your deep learning
code on Cori to take advantage of the compute power available from Cori's KNL nodes.
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. Deep Learning Software

Examples of how machine learning is being used for science at NERSC

NERSC has strong ML
support programs for
DOE Offices.

Several other areas are
already in the NERSC
program.

The KSTAR-PPPL
initiative will get fusion
into the NERSC ML
program
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Deep Learning Software

NERSC supports several software frameworks for machine learning and deep learning. If there is
a framework you would like to see evaluated and supported at NERSC, please let us know.

Anaconda

Most standard machine learning and deep learning packages are available via the anaconda
installation on both Edison and Cori. Anaconda is the easiest way to access and use these
frameworks, and is the way we recommend most users get started with machine learning at
NERSC. The packages include:

e Tensorflow
e XGBoost

e Scikit-Learn
e Theano

e Torch

Spark

We also provide Spark as a separate module.

Caffe

Caffe is also available in a separate module - simply use | module load caffe/master ,

Back to Top
Tensorflow

As well as the version available under the anaconda distribution, we also provide a version that
has been optimized to run very efficiently on Intel architectures. Please see Using TensorFlow at
NERSC for more details.
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Some basics of ML techniques
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K-Means Clustering
(movie by R. Churchill, PPPL)

tor K
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Then, use m(¢) as solution
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Example for the slow lane usage: K-Means Clustering
reveals interesting v-space structure of electron dynamics
= in blobby edge turbulence gzam
NEeRSC (R. Churchill, PPPL, )

Spark

Apache Spark is used here to generate
the example physics shown here.

= K=5
= At a higher energy band relative to
local T, trapped particle’s response
to blobs is mutually correlated and
decorrelated from passing particles
» A sign of TEM driven turbulence

?)PPPL | 14
P




ELM evolution patterns identified with

machine learning techniques
Utilized clustering methods, D. Smith (U. Wisconsin, PPPL)
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\ Next step: automate discovery and tagging of ELMs in the NSTX/NSTX-U data archive
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Deep convolutional neural networks for long-
time series analysis (Churchill, PPPL)

Fusion plasmas exhibit a range of timescales

and physics

Fusion experimental diagnostics are
disparate, and highly time resolved

PPPL is developing deep convolutional neural
networks to automatically analyze and identify

physics of interest

This will allow end-to-end training on raw data
from multiple sources, in an efficient manner
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AN
Example for the fast lane usage using neural network, @

for near real-time NUBEAM simulation in TRANSP
Dan Boyer (PPPL)

* Predictive TRANSP simulations can take hours per simulation second
« NUBEAM is a Monte Carlo code that calculates the effect of neutral beams on the
plasma (heating, current drive, torque)
* Often takes >70% of TRANSP calculation time for high quality NUBEAM

» Basic machine learning approaches enable the development of NubeamNet

led NSTX-U TRANSP run 204682513, x=0.053 led NSTX-U TRANSP run 204682513
CaICUIatlon Of beam ' === NubeamNet 1.4 1 -- NubeamNet: t=0.484s

) — NUBEAM |  [[T7T==l - —— TRANSP: t=0.484s
effects (at 5ms - T e eogse
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I NUBEAM 0.00 4=

1.2 1

=

U

o
)

=

N

v
s

=~

=

=}

S}
L

o

N

u
)

Fast ion pressure [Pa]
o
o

Fast ion pressure [Pa]

0.2 0.4 06 08 10 12 0.0 0.2 0.4 0.6 0.8 1.0
Time [s] Normalized toroidal flux



Mathematical Tools for Lossy & Faithful Data Reduction
Mark Ainsworth Brown U. & ORNL

NIMROD - MGARD Reduction (a=9)

Magnetic island detection

Trajectories depend om
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The same data reduction technique can be applied to ELM and turblent blobs

S: Smoothness parameter
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e |nitial KSTAR-NERSC test performed in 10/2018

Where are we in the process?

Remote streaming, with data reduction, implemented in

data I/O framework ADIOS [1]
KSTAR - PPPL streaming demo on 8/2017 of near real-
time processing of ECEi data, with comparison to XGC

simulation
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Measure
' f— — Making movi
( KSTAR Storage | ADIOS | b iiel
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g i ) Feedback to

next shot

Demo used special one-time PPPL network configuration (a Ia science DMZ),

which gave ~7Gbps > ITER-Japan test speed -

o Normal PPPL firewall setup gives ~0.2Gbps ...
o Ongoing discussion if dedicated science
DMZ can be established at PPPL
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Adios Data Streams Over Wide-Area-Network
(WAN) o ___ _Memorytomemorydatadelvery_ _ _ _ _ _ _ _ __ >

Transparent workflow execution

Data Stream

WAN Transportation
e SST
* DataMan

Research on stream-based WAN data process
— In-transit processing (supporting data-in-memory)

— Data indexing & reduction to reduce network payload

— Plug-in methods: SST (EVPath-based), DataMan (ZMQ-based
control)

® )PPPL 2



Adios between NERSC-KSTAR

Analysis

NERSC, USA

Analysis Parallel

Computer Room

KSTAR

AdiosOOppI.gov
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Software Infrastructure to Enable the Workflow

Data Generator

!

ADIOS 2.0
Write API

Site A |

Real-time feedback controlling data streamigg
strategies, compression strategies, etc.

Site B

¢

DataManager
Library

»«-\

Callback

Data Analyzer /
Visualizer

I

ADIOS 2.0
Read API

23



Short-Term Plans (to be discussed with KSTAR researchers)

Low hanging fruits
» Off-line data reduction and ML-model training on KSTAR-ECEI data for ELM
physics, based on the existing post-processing routines (POSTECH, UNIST)
- ELM precursor/onset, interaction with turbulence and RMPs

o On-line near real-time data reduction & ML analysis of the KSTAR ECEI ELM
- Quick feed back to next-day experiments

Extension
« Initiate simulation and provide real-time physics results on federated dashboard

Further extension
» Federated decision using ML on the experimentally observed plasma profiles,
with EFIT reconstruction on multiple time slices (highly parallel): Sabbagh

» Near real-time analysis of NTM onset and growth - feedback to experiment
- Accelerated research on NTM control

» Real-time observation/control of disruption precursor events: Sabbagh

» Near real-time analysis of the divertor heat-load footprint - feedback
- Accelerated research on divertor heat-load width control



